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ABSTRACT 
 
 

A short term stochastic optimization-simulation model of deficit micro-irrigation, which 
distributes crops water stress over whole growing season, has been developed and 
tested in this study. The model, which is a nonlinear program with an economic 
objective function, considers interaction of stochastic rainfall and irrigation. It includes 
an eco-hydrologic-based simulation model that integrates an explicit stochastic 
analytical soil moisture model with the FAO crop yield model. Under some simplistic 
assumptions, analytical expressions have been derived for estimating expected value 
of crop yield and irrigation requirement volume along with assessing credibility of the 
assumptions made. While the developed explicit stochastic optimization model is of 
NLP form and showing convexity properties, it is computationally efficient comparing 
a similar implicit model which is time-consuming due to necessity of simulating the 
system for many realizations of rainfall events. Therefore, the model was effectively 
used in multi-crop situations and is extendable to be utilized in long-term irrigation 
planning models. The model was used in Dasht-e Abbas irrigation district of Karkheh 
basin in southwest of Iran, multi-crop realistic case. Results show that the proposed 
modeling approach with fast converging property is computationally efficient. It was 
also observed that for a multi-crop case with the same soil and climate conditions for 
all crops, three key factors, including potential crop yield, crop price and irrigation 
demand; chiefly participate in denoting the best deficit irrigation strategy under water 
shortage condition. 

 
  

Résumé et conclusions 
 
 
l'incertitude des précipitations, en tant que partie intégrante de la planification et 
l'ordonnancement irrigation déficitaire, doit être pris en compte dans l'irrigation 
déficitaire de modélisation. Des expressions analytiques pour les valeurs attendues 
du rendement et de volume exigence d'irrigation ont été obtenues et utilisées comme 
le modèle de simulation d'un modèle à court terme d'optimisation stochastique non 
linéaire pour la planification de l'irrigation déficitaire. Le modèle avec une fonction 
économique objective, qui considère l'interaction de la stochastique de pluie et 
d'irrigation, intègre les expressions dérivées d'analyse avec le modèle de la FAO le 
rendement des cultures. Le modèle a été résolu par SQP qui s'est avéré être 
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efficiente de calcul par rapport à SDP et Monte Carlo en fonction des formulations 
utilisées dans la littérature qui deviennent inefficaces pour des problèmes de calcul 
multi-cultures. 
Pour le cas multi-cultures de Dasht-e district d'irrigation de Abbas Karkheh bassin en 
Iran, il a été constaté dans la stratégie d'irrigation déficit qui baisse de 50% dans l'eau 
appliquée pour l'irrigation a conduit à seulement 20% de réduction de l'avantage net 
total (). Aussi dans un état extrême avec réduction de 80% dans l'eau d'irrigation, le 
bénéfice net total diminue de 50% par rapport à sa valeur maximale. 
Le modèle proposé, dans lequel un modèle à base physique stochastique de 
l'irrigation déficitaire a été intégré dans un algorithme d'optimisation convergence 
rapide appropriés pour résoudre des problèmes multi-cultures, est avantageux par 
rapport à d'autres modèles présentés pour optimiser les calendriers d'irrigation dans 
l'incertitude. Toutefois, l'étude est la première étape dans l'application d'un célèbre 
modèle stochastique humidité du sol dans l'optimisation de l'irrigation déficitaire. À cet 
égard, l'élaboration d'un modèle analytique qui fournit de l'information probabiliste 
complète sur le rendement serait d'une grande importance. Explorer la possibilité 
d'utiliser plus détaillée des modèles de simulation stochastique de l'irrigation 
déficitaire fournissant pdf-s des variables aléatoires d'intérêt et aussi d'autres types 
de modélisation des stratégies de l'irrigation déficitaire (RDI et PRD) dans le cadre 
proposé de simulation-optimisation devraient être considérés pour de futures études . 

 
 

INTRODUCTION 
 

Deficit irrigation (DI) is known as a management measure toward solving water 
scarcity problem and improving water productivity. In other hands, rainfall and 
irrigation water (surface water resources) which play the most important role in 
supplying agricultural water requirement, are under uncertainty that needs to be taken 
into account. In this regard, stochastic dynamic programming (SDP) models have 
been developed to precisely survey irrigation planning under uncertainty for a single-
crop farm [Dudley et al., 1971a; Dudley and Burt., 1973] and multiple crop farm by 
means of hybrid modeling techniques including: SDP - LP (Linear Programming) 
[Dudley et al., 1976], SDP – DP (dynamic Programming) [Vedula and Kumar, 1996], 
SDP - NLP (Nonlinear Programming) [Ghahreman and Sepaskha, 2002], two-phase 
SDP [Umamahesh and Sreenivasulu, 1997]. These models constitute from three 
essential components: Monte Carlo technique for generating time series of stochastic 
processes, simulation of the main system and dynamic programming (DP). 
Consequently, in addition to the problem of curse of dimensionality of DP approach 
(limited to consideration of two or three state variables), utilizing Monte Carlo 
simulation, which is also a time consuming numerical method and needs 
approximation due to discretization of variables, leads to computational inefficiencies.  

The above mentioned weaknesses were a starting point for an idea of 
developing explicit stochastic models in which an analytical simulation component 
was coupled with optimization techniques such as SDP [Bras and Cordova, 1981] or 
NLP [Ganji et al., 2006]. While employing helpful idea of combining optimization 
techniques with analytical-based simulation models, these models have been limited 
to single-crop problems and either still using dynamic programming approach or 
including too simplifying assumptions to deal with stochastic nature of uncertainties.  

More recently, significant analytical and realistic stochastic soil moisture model 
have been intensively under consideration [Rodriguez-Iturbe and Porporato, 2004]; 
however, it may not be easy to put it in use in an optimization modeling framework. 
Building upon the analytical model, this paper is going to presents a new stochastic 
optimization model for scheduling short-term deficit irrigation that while is efficient in 
dealing with medium and large scale problems, like multiple crop planning, considers 
realistic stochastic nature of rainfall in a precise daily time scale. 

 



 

Model Formulation 
 
 
Irrigation scheduling is generally defined as the problem of determining timing and 
amount of irrigation water to be supplied to a given crop area, in a given geographical 
region, during the growing season [Rhenals and Bras, 1981]. With recent advances in 
soil moisture monitoring systems and also modern irrigation technologies, DI can be 
implemented more precisely and effectively. A specific method of DI is called deficit 
micro-irrigation [DeTar, 2004]. By deficit micro-irrigation (DMI) we mean keeping 
relative soil moisture between rainfall events in a pre-specified level called soil 
moisture lower bound, which is below the point of incipient stomatal closure and 
above the wilting point. This form of DI distributes water stress throughout the whole 
growing season. A short term model of DMI scheduling for a multi-crop field is to be 
presented in this section. 
 
 

Objective function 
 
 
The model is a mathematical program with an economic objective function of net 
benefit obtained from agriculture over growing season as follows: 
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where f  is objective function that depends on vector of decision variables ( Ls
 ), soil 

moisture lower bounds of crops, where c  is crop index and cLs ,  represents each 

component of the vector. caY ,  is expected value (e.v.) of actual yield of crop c  that as 
shown in following of paper is a function of soil moisture lower bound. cA  is cultivation 
area of crop c  and cPe  and cTC  respectively represent crop price per unit mass and 
crop total production cost per unit area. Note that the term within parentheses on right 
hand side of equation (1) represents net benefit per unit area resulting from production 
benefit (crop yield multiplied by its price) minus production cost.  
Crop yield, whose mean appeared in Eq. (1), is a stochastic variable. In this study, 
founding on soil moisture dynamics, an analytical expression is presented to estimate 
expected value of crop yield. Other terms in the objective function, except Ls

 , are 
supposed to be given. 

 
 

Constraints 
 
 
There are two main groups of constraints. The first group of constraints limits total 
irrigation volume as it must be less than total available water in the season:  

 
c
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Where  .cV  is e.v. of irrigation volume for crop c , which is a function of soil moisture 

lower bound, and TW  is total volume of available water. The function relating cV  and 
cLs ,  has been introduced in the following. The second group of constraints limit actual 

yield of each crop to a minimum threshold ( cYmin, ),  

.,min, cac YY          (3) 
 

 



 

Stochastic soil moisture model of deficit micro irrigation 
 
 
A physically-based stochastic soil moisture model [Rodriguez-Iturbe and Porporato, 
2004] has been used to derive analytical expressions for expected values of actual 
crop yield and probability density function of irrigation volume. Soil moisture 
dynamics, at daily time scale, is modeled by treating the active soil as a reservoir with 
an effective storage capacity that is intermittently filled by effective rainfall pulses of 
random depth. Soil water losses occur via evapotranspiration, deep infiltration, and 
surface runoff. Assuming vertically-averaged conditions the soil water balance 
dynamics can be expressed as: 

))(())(())(()()(
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dt

tds
nZr      (4) 

where n  is the soil porosity, rZ  is the active soil depth, wherein most of the root is 
located, and s  is the relative soil moisture in excess of its amount at wilting point with 

0s . The inputs to the soil moisture balance equation are effective rainfall, )(tR , and 
irrigation, ))(( tsI , where effective rainfall is an instantaneous event occurring 
according to a marked Poisson process with parameters   (mean frequency of 
events) and   (mean intensity of each event value) and irrigation is modeled by 
means of keeping relative soil moisture between rainfall events in a pre-specified 
level called soil moisture lower bound, which is below the point of incipient stomatal 
closure and above wilting point [Vico and Porporato, 2010].  

The main soil water losses include deep infiltration and runoff losses, ))(( tsLQ , 
that in a simplified manner is assumed to take place instantaneously whenever soil 
moisture reaches the upper threshold Us , and evapotranspiration, ))(( tsET  which is 
modeled through a piece-wise linear loss function as follows, 
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where )( rp nZET  and pET  is maximum rate of daily ET. Therefore the soil water 
loss function could be expressed only based on ET. Figure 1 shows a realization of 
such a stochastic soil moisture process. 
  
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Figure 1.  Relative soil water process under deficit micro-irrigation for loam soil with 
normalized upper bound of 0.41, close to normalized field capacity, and lower bound 
of 0.17 (Relative processus de l'eau du sol en conditions de déficit de micro-irrigation 

pour les sols limoneux avec normalisée limite supérieure de 0.41, proche de la 
capacité au champ normalize, et une limite inférieure de 0.17) 

 
Rainfall randomness causes stochasticity in soil moisture process and its 
constituents. Consequently, Chapman-Kolomogorov equation for soil moisture 
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process could be written by separation to two parts [Vico and Porporato, 2010]. The 
first part is for continuous distribution that is: 
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And the second part for mass (atom) of probability at Ls  as follows: 
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dt

d
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Under stochastic steady-state condition ( 0),(  ttspdm ), pdf of soil moisture 
for DMI is resulted as:  
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while atom of probability is: 
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Where dmC  is the normalization constant such that 
U

L
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Crop yield 
Crop yield model of FAO [1979] states that decrease in cumulative actual 
evapotranspiration causes decrease in crop yield, as follows: 
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where aY  and pY  are respectively actual and potential crop yields, yk  represents 

crop sensitivity to water stress, and aCET  and pCET  are cumulative actual and 
potential (maximum) ET over growing season, respectively. By means of piece-wise 
form of )(s  and based on probability density function of soil moisture represented 
before, someone can derive an analytical equation relating e.v. of actual crop yield 
and other variables of interest, particularly the decision variable ( Ls ) as follows: 
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Where (.)  and (.)P  are respectively gamma and regularized incomplete gamma 
functions and dmC  is a normalizing factor. 

 
 

Irrigation requirement volume 
 
 
Taking Vico and Porporato’s approach [2010] and assuming steady-state condition, 



 

e.v. of irrigation requirement volume with respect to Ls  can be derived for DMI as:  
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Where seasT  is duration of growing season and other parameters are already defined. 
 
 
One of the most popular and robust algorithms for solving NLPs is Sequential 
Quadratic Programming (SQP). SQP is based on solving a series of sub-problems 
that are Quadratic Programming (QP) approximation of original problem in each step. 
It was found while solving the above formulation via SQP that the model is fast 
converging. In most cases, the optimization procedure consumed less than 26 
iterations to complete the task at most in 2 seconds for the case of 7 crops.  
 
 

Results and Discussion 
 

Dasht-e Abbas Irrigation District (DAID) with an area of 16500 hectares is located 
downstream of Karkheh Dam [Mahab Ghodss Consulting Engineers, 2001]. Among 
all irrigation districts in the region, DAID has rather proper water and soil resources. 
The climate is semi-arid with average annual rainfall of 280 mm and annual potential 
ET of 1625 mm. Based on analysis of daily rainfalls at Dasht-e Abbas climatology 
station, reduced rainfall frequency (  ) and its depth ( ) are estimated as 0.088  
day-1  and 1.12 cm, respectively. About 75% of cultivation is taken place during winter. 
Agronomic and economic properties of winter crops in DAID are presented in  
Table 1. 

 
 

Table 1.  Agronomic and economic properties of winter crops in Dasht-e Abbas 
Irrigation District (Agronomiques et des propriétés économiques des cultures d'hiver à 

Dasht-e Abbas Irrigation District) [Mahab Ghodss Consulting Engineers, 2001] 

Crop Type 
Plant. 
Date 

Area 
(ha) 

ETmax 
(cm/day) Tseas 

Zr 
(cm) Ky 

Max 
Yield 
(Kg/ha)

Price 
(Rials/Kg) 

Total 
Cost 

(Rials/ha) 
Wheat winter Nov 4125 0.26 200 100 1 6000 1700 1.39E+06 
Barley winter Nov 2475 0.23 200 100 1 5000 1250 1.23E+06 

Fava bean winter Nov 1320 0.20 175 50 0.85 2500 3200 1.66E+06 
Eggplant winter Oct 990 0.18 130 70 1.05 25000 650 5.96E+06 

Cucumber winter Nov 825 0.16 130 70 1.1 20000 700 5.89E+06 
Tomato winter Jan 825 0.38 155 70 1.05 25000 550 6.59E+06 

Sugar beet winter Nov 1650 0.28 205 70 0.8 50000 390 4.37E+06 
 
 

As the region suffers from water shortage, deficit irrigation should be taken into 
consideration. The proposed DI optimization model has been tested and analyzed in 
DAID as a multi-crop case. Sensitivity analysis of total available water for irrigation 
(TW ) which is available at beginning of growing season, as presented in Table 2, 
could appropriately demonstrate interaction between rainfall and irrigation in a multi-
crop system. TW  can take values ranging from zero to a maximum value, maxTW , 
which is equal to sum of maximum irrigation requirement volumes of different crops, 
i.e.    c cLcdm ssVTW *)( ,,max .  

 



 

Table 2.  Multi-crop model results and sensitivity analysis with respect to total 
available water (Résultats du modèle multi - cultures et l'analyse de sensibilité à 

l'égard de l'eau totale disponible) 
Total Water (mcm) 7 11 14 18 22 25 29 32 36 
TW / TWmax (%) 20 30 40 50 60 70 80 90 100 
Net Benefit (109 Rials) 49 60 69 76 83 90 96 101 105 
NB / NBmax (%) 47 58 66 73 79 86 91 96 100 
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Wheat 0.13 0.13 0.13 0.19 0.25 0.29 0.33 0.33 0.33 
Barley 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.24 0.33 
Fava bean 0.07 0.07 0.07 0.07 0.07 0.16 0.27 0.29 0.33 
Eggplant 0.27 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 
Cucumber 0.27 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 
Tomato 0.14 0.14 0.29 0.32 0.32 0.33 0.33 0.33 0.33 
Sugar beet 0.13 0.25 0.30 0.32 0.32 0.33 0.33 0.33 0.33 

 
 
Table 2 presents the optimum solution of the soil moisture lower bound ( Ls ) for 
different crops and for different total irrigation water, wherein *s , the normalized 
relative soil moisture at stomatal closure point, equals 0.33 that is the maximum 
possible value for Ls . It is seen that 50% decrease of applied water for irrigation has 
resulted in only 20% reduction in total net benefit ( NB ). Also in an extreme condition 
with 80% reduction in irrigated water, total net benefit reduces by 50% compared to 
its maximum value.  
It could be verified that optimum values of the soil moisture lower bound are 
increasing while the irrigation water increases. With max/TWTW  varying from 20% to 
30%, Ls  approaches its maximum value for eggplant and cucumber, while there is no 
water stress throughout the growing period. With increase of max/TWTW , other crops 
have also reached to this stress-less situation; first sugar beet, then tomato, next 
wheat, after that fava bean, and finally barley. This ranking of crops in reaching 
stress-less situation is affected by two important factors presented in Table 3. The 
first factor is an economic one that is product of the maximum yield and the price for 
each crop and the second one is the irrigation volume. While final ranking has been 
reported in column 6, the ranking with respect to each of the above factors has been 
respectively presented in columns 3 and 5. For the first three places, i.e. eggplant, 
cucumber and sugar beet, both criteria are important to the ranking; while in the next 
four ones, only economic factor is influential.  

 
Table 3. Assessment of crop domination in total water sensitivity analysis  

(Évaluation de la domination des cultures dans l'analyse de l'eau sensibilité totale) 

Crop 
Max Yield × Price Irrigation Req. 

Order in Irrigation Policy Value 
(106 Rials / ha) Order Value (cm) Order 

Wheat 1.02 5 33.1 5 5 
Barley 0.63 7 27.3 4 7 
Faba bean 0.80 6 22.7 3 6 
Eggplant 1.63 2 12.6 2 1 
Cucumber 1.40 3 10.2 1 1 
Tomato 1.38 4 45.7 7 4 
Sugar beet 1.95 1 40.4 6 3 

 

 
References 

 
 

1. Bras, R. L., and J. R. Cordova (1981), Intra-seasonal water allocation in deficit 
irrigation, Water Resour. Res., 17, 866–874, doi:10.1029/ WR017i004p00866. 

2. DeTar, W. R. (2004), Using a subsurface drip irrigation system to measure crop 
water use, Irrig. Sci., 23: 111–122. 

3. Dudley, N.J., D.T. Howell and W.F. Musgrave (1971), optimal intraseasonal 
irrigation water allocation, Water Resources Research, 7(4), 770-788. 



 

4. Dudley, N.J. and O.R. Burt (1973), stochastic reservoir management and system 
design for irrigation, Water Resources Research, 9(3), 507-522. 

5. Dudley, N.J., O.R. Brut, and D.M. Reklis (1976), Reliability, trade-offs, and water 
resources development modeling with multiple crops, Water Resources 
Research, 12(6), 1101-1108. 

6. FAO (1979), Yield response to water, FAO Irrigation and drainage paper 33, 
Rome, Italy. 

7. FAO (1998), Crop evapotranspiration – Guidelines for computing crop water 
requirements, FAO Irrigation and drainage paper 56, Rome, Italy. 

8. Ganji, A., K. Ponnambalam, E.D. Khalili and M. Karamouz (2006), A new 
stochastic optimization model for deficit irrigation, Irrigation Science, Vol. 25, No. 
1, 63-73. 

9. Ghahraman, B. and A.R. Sepaskhah (2002), Optimal allocation of water from a 
single purpose reservoir to an irrigation project with pre-determined multiple 
cropping patterns, Irrigation Science, 21, 127-137. 

10. Laio, F., A. Porporato, L. Ridolfi and I. Rodriguez-Iturbe (2001), Plants in water-
controlled ecosystems: active role in hydrologic processes and response to 
water stress ii. probabilistic soil moisture dynamics, Adv. Water Resour., 24, 707-
723. 

11. Mahab Ghodss Consulting Engineers (2009), Irrigation and Drainage and 
Agricultural Studies of Water Resources Allocation Optimization in Karkheh River 
Basin, Final Report.  

12. Rhenals, A.E. and R.L. Bras (1981), The irrigation scheduling problem and 
evapotranspiration uncertainty, Water Resources Research, 17(5), 1328-1338. 

13. Rodriguez-Iturbe, I., and A. Porporato (2004), Ecohydrology of Water controlled 
Ecosystems: Soil Moisture and Plant Dynamics, Cambridge Univ. Press, 
Cambridge, U. K. 

14. Umamahesh, N.V. and Sreenivasulu, P. (1997) “Two-phase stochastic dynamic 
programming model for optimal operation of irrigation reservoir”, Water 
Resources Management, 11, 395-406. 

15. Vedula, S. and D.N. Kumar (1996), An integrated model for optimal reservoir 
operation for irrigation of multiple crops, Water Resources Research, 32(4), 
1101-1108. 

16. Vico, G., and A. Porporato (2010), Traditional and microirrigation with stochastic 
soil moisture, Water Resour. Res., 46, W03509, doi:10.1029/2009WR008130. 




